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Passive acoustic monitoring (PAM) is commonly used to generate information on the distribution,
abundance, and behavior of cetacean species. In African waters, the utilization of PAM lags behind
most other continents. This study examines whether the whistles of three coastal delphinid species
(Delphinus delphis, Tursiops truncatus, and Tursiops aduncus) commonly encountered in the
southern African subregion can be readily distinguished using both statistical analysis of standard
whistle parameters and the automated detection and classification software PAMGuard. A first
account of whistles recorded from D. delphis from South Africa is included. Using PAMGuard,
classification to species was high with an overall mean correct classification rate of 87.3%.
Although lower, high rates of correct classification were also found (78.4%) when the two T. adun-
cus populations were included separately. Classification outcomes reflected patterns observed in
standard whistle parameters. Such acoustic discrimination may be useful for confirmation of mor-
phologically similar species in the field. Classification success was influenced by training and test-
ing the classifier with data from different populations, highlighting the importance of locally
collected acoustic data to inform classifiers. The small number of sampling populations may have
inflated the classification success, therefore, classification trials using a greater number of species

are recommended. © 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4978000]
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I. INTRODUCTION

Passive acoustic monitoring (PAM), i.e., the recording
of sound within a habitat (Merchant et al., 2015), has been
widely applied to generate information on the distribution,
density, and abundance of numerous cetacean species
(Zimmer, 2011). PAM is fast becoming the tool of choice in
many areas of applied research to monitor anthropogenic
activities in the marine environment and, more specifically,
the effects of such activities on cetaceans (Weilgart, 2007;
André et al., 2011; Zimmer, 2011). The equipment and
methodology used in PAM of cetaceans has developed rap-
idly over recent decades. Although the initial set up costs
can be high, PAM can be cost effective in the medium to
long term, generating detailed information over time, from
inaccessible regions and across a range of spatial scales
(e.g., Mellinger et al., 2007; Van Parijs et al., 2009).
Therefore, PAM has wide ranging applications in Africa
where there are large data gaps in our understanding of ceta-
cean occurrence and finances are often limited.

There are several benefits of PAM beyond visual survey
techniques for generating information on cetaceans. Notably,
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PAM enables data collection on species presence throughout
the night and in poor weather conditions when visual data col-
lection would not be possible. Archival marine acoustic
recording units (ARUs) can be deployed in extreme or remote
locations (Sousa-Lima et al., 2013) where regular boat sur-
veys would not be feasible. If deployed in arrays containing
multiple devices, acoustic localization can be used to track the
movements of individuals (Dunn and Hernandez, 2009).
Distance sampling (Marques et al., 2009) and mark-recapture
approaches (Stevenson et al., 2015) can be used to estimate
animal density or abundance using acoustic data, and this field
is growing rapidly (Marques et al., 2013). Furthermore, com-
bined visual and acoustic line transect surveys can be applied
to better understand the distribution of cetacean species, for
example, sperm whales (Barlow and Taylor, 2005), vaquita
(Gerrodette et al., 2011; Swift et al., 2011), and Yangtze
River dolphins (Turvey et al., 2007; Richman et al., 2014). If
vocalizations are species specific and visual identification
problematic (e.g., due to poor sightings conditions, brief or
distant observations, or morphological similarity), acoustic
identification can clarify the species (Oswald et al., 2003;
Oswald et al., 2007; Gillespie et al., 2013). Real-time species
confirmation can assist in survey decisions, saving time and
resources (Oswald et al., 2007).

Although clearly advantageous, the application of PAM
for research and monitoring of cetacean species in African
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waters has lagged behind other more affluent regions. There
have been some recent advances in this field (Hofmeyr-
Juritz and Best, 2011; Gridley et al., 2012; Gridley et al.,
2014; Gridley et al., 2015), however, basic data on the call
repertoire and vocal characteristics of most cetacean species
encountered in southern Africa are still missing (Best, 2007;
Elwen et al., 2011). Such data are necessary for the imple-
mentation of successful PAM programs. A growing number
of research groups operating in southern Africa are utilizing
ARUs to monitor cetacean occurrence together with ambient
noise conditions. In the absence of visual species confirma-
tion, the success of such acoustic monitoring depends largely
on how confidently species can be identified through their
vocalizations. Although this has been demonstrated in other
areas (e.g., Rendell et al., 1999; Oswald et al., 2003), no study
has investigated species specific call characteristics of delphi-
nids in southern Africa or the success of acoustic species dis-
crimination using automatic  classifiers. Intra-specific
geographic variation in vocalization characteristics may also
act to compromise discrimination, if classifiers are not trained
using data from the region of interest (Gillespie et al., 2013).

For dolphins, acoustic classification to species can be
achieved using commonly produced vocalizations such as
echolocation clicks (Soldevilla er al., 2008; Roch et al.,
2011) or whistles (Rendell et al., 1999; Oswald et al., 2003;
Oswald et al., 2007; Gannier et al., 2010), or a combination
of these commonly emitted sounds types (Roch et al., 2007).
Whistles are narrow-band frequency modulated communica-
tion signals often used in social contexts (Herzing, 2000;
Quick and Janik, 2008). Most often classification is based on
discriminant function analysis (DFA; Rendell et al., 1999),
classification and regression trees (CART; Gannier et al.,
2010) or both methods (Oswald et al., 2007) using standard
parameters extracted from the whistle contour, although
spectral analysis has also been employed (Roch et al., 2007).
Several whistle detection and classification programs have
been developed (Oswald et al., 2007; Gillespie et al., 2013;
Lin et al., 2012; Lin and Chou, 2015). Some, such as
ROCCA (Oswald et al., 2007), require a human user to man-
ually select high quality whistles suitable for classification,
the fundamental frequency of which is then extracted and
classified. Others, such as PAMGuard (Gillespie et al.,
2013), use an automated contour detection algorithm to iden-
tify contours for subsequent classification.

PAMGuard is an open-source software for the auto-
mated detection, localization, and classification of cetacean
sounds (Gillespie et al., 2009; Gillespie et al., 2013). The
program PAMGuard (version 1.13.04) differs from other
whistle classification software by offering fully automated
whistle detection through the integrated whistle and moan
detector (WMD) and subsequent classification of whistle
contour data (Gillespie ef al., 2013). As a whistle detector
may only partially detect a whistle or break a whistle into
several segments, the whistle classification method devel-
oped by Gillespie et al. (2013) has been carefully designed
to be robust to the fragmentation taking place during the
whistle detection process. This method therefore overcomes
some of the commonly encountered issues with automated
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whistle classification, and correct classification rates exceed-
ing 94% have been reported (Gillespie et al., 2013).

This study focuses on three commonly encountered
whistling species found in the near-shore waters of the
southern African subregion: common and Indo-Pacific bot-
tlenose dolphins (Tursiops truncatus and Tursiops aduncus)
and common dolphins, which were previously considered
Delphinus capensis (Best, 2007) but now are considered
Delphinus delphis (Cunha et al., 2015). We describe the
whistles of these species, including a novel description of D.
delphis whistles, and test whether these species can be read-
ily discriminated using standard whistle parameters. We
investigate the performance of PAMGuard for automated
classification of the same datasets. Of particular interest was
how well PAMGuard could correctly distinguish between 7.
aduncus and T. truncatus—two closely related species that
occur in sympatry or parapatry within the Indo-Pacific
region and are notoriously difficult to identify from field
observations. We examine whether classifiers are sensitive
to macro- and micro-geographical variation in whistle char-
acteristics using data from 7. aduncus inhabiting the South
West Indian Ocean and identify possible sources of error in
the whistle classification process.

Il. METHODS
A. Data collection

Acoustic recordings of free ranging dolphins were made
from three widely separated sites within the southern
African subregion: T. truncatus from Walvis Bay (Namibia),
T. aduncus and D. delphis from Plettenberg Bay (South
Africa), and T. aduncus from North and South of Unguja
Island, Zanzibar Archipelago (Tanzania). The latter will be
referred to as Zanzibar (Fig. 1).

The acoustic recording information and periods when
data were collected are summarized in Table 1. In all cases,
the HTT-96-MIN hydrophone (High Tech, Inc., Long Beach,
MS, sampling frequency 96kHz, flat frequency response
between 2 Hz and 30kHz = 1 dB) was weighted with a 1 cm
diameter steel chain and lowered between 1 and 6 m below the
water surface from a small motorized research vessel, while
the vessel was stationary, in idle, or moving slowly. During
2008-2009, acoustic recordings were digitized using an Edirol
UA-25 sound card (Roland Corp., Shizuoka, Japan) and saved
to a personal computer. Thereafter, a Zoom H4n digital
recorder (Zoom Corp., Tokyo, Japan) was used to sample the
data. Recordings were made over a range of behavioral states
and group compositions typical for each species.

B. Descriptive statistics of whistles parameters

Acoustic files were visually and aurally inspected for
the occurrence of whistles. Standard parameters were mea-
sured from whole whistle contours to determine the underly-
ing differences between the four delphinid populations and
two regions of Zanzibar. For this we defined a whistle con-
tour as a continuous narrow-band sound >100 ms in duration
and with at least part of the fundamental frequency exceed-
ing 3 kHz (Gridley et al., 2012; Gridley et al., 2014).
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Whistle selection and measurement were conducted from the
two T. aduncus populations as described in Gridley et al.
(2012). Measurements of whistle contours from 7. truncatus
and D. delphis were derived as follows. Whistles were iden-
tified in the spectrogram display of Adobe Audition (Ver.
4.0 and Ver. 5.0, Adobe Systems Inc., San Jose, CA) and
Raven Pro 1.4 (Cornell Bioacoustic Research Program,
2011) software using a Hanning window with a fast Fourier
transform (FFT) length of 512 samples (time resolution
5.33ms). Each whistle identified was visually assessed and
graded based on the signal-to-noise ratio (SNR) as follows:
(1) signal is faint but visible on the spectrogram, (2) signal is
clear and unambiguous, (3) signal is prominent and domi-
nates. High quality sounds were assessed as SNR 2 or 3, had
a clear start/end, and were not masked by simultaneous
sound. The number of inflection points, i.e., change in slope
from positive to negative or vice versa was visually assessed
and the duration was measured in Adobe Audition. Whistle

T
50.00

characteristics, including the start, end, minimum, maxi-
mum, and frequency range, were measured in Raven using
the selection function.

In most cases, the parameter data were non-normally
distributed (Wilk-Shapiro test: p <0.05) and the within-
population variance was non-homogenous (Fligner-Killeen
test of homogeneity of variances: p < 0.05). Statistical differ-
ences between the whistle parameters for the populations
and species were therefore investigated using non-
parametric Kruskal-Wallis tests conducted in the R statistical
software (R Core Team, 2015). Post hoc Dunn’s tests were
applied to determine where significant differences lay fol-
lowing Zar (2010). The results were adjusted with the Holm
multiple pair-wise correction method (Holm, 1979; Aickin
and Gensler, 1996). The Holm procedure is a multistage test
that adjusts the level of significance (o) according to the
number of null hypotheses remaining to be tested (¢) with
o = o/c, in order to control the familywise error rate inherent

TABLE I. Summary details of acoustic data collection and dataset used in the PAMGuard Whistle and Moan Detector (WMD) from four populations of delphinids
recorded in Namibia (NAM), South Africa (SA), and Tanzania (TZ). Values in parentheses for Zanzibar North are the subsampled dataset used in analysis III.

Number of segment

Latitude and Number of  Number of  Duration analyzed contours identified
Species names Location Longitude Period encounters files (hh:mm:ss.000) by PAMGuard WMD
Plettenberg Bay, 34°1°S March 2009 2 11 00:53:21.750 14777
Delphinus delphis SA 23°25’E April 2014
Walvis Bay, 22°57°S 2009 46 46 09:38:17.392 38230
NAM 14° 30’ E 2011-2013
Tursiops truncatus
Plettenberg Bay, 34°1°S March 2009 8 47 05:30:40.797 28767
SA 23°25’E April 2014
Tursiops aduncus
Zanzibar North 6°9°S February—March 2008 14 85 08:36:08.182 10316
39° 12°E (14) (40) (04:13:43.022) (4952)
Tursiops aduncus Zanzibar South, 17 65 09:07:26.525 4743
TZ
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to multiples comparisons tests. Regional variation between
North and South Zanzibar was tested separately using non-
parametric two-way analyses of variance (ANOVAs; Mann-
Whitney U test) as the data failed the assumption necessary
for parametric testing (Wilk-Shapiro test: p < 0.05).

C. Automated whistle detection and classification

The investigation of PAMGuard whistle classification
was run as five analyses. (i) We investigated species level
discrimination in PAMGuard by comparing whistles from
the three study species. Here all data from T. aduncus were
pooled. (ii) We investigated the discriminatory ability of
PAMGuard in a classification test using data from 7. adun-
cus from Zanzibar and Plettenberg Bay (~4000km apart)
included separately. Previous studies have demonstrated
macro-geographic variation in the whistles of these popula-
tions using standard whistle parameters such as end fre-
quency (Gridley et al., 2012). (iii) We investigated the
discriminatory ability of PAMGuard in a classification test
using data from 7. aduncus from two sites around Zanzibar
Island, which may potentially differ at a micro-geographic
scale, North and South Zanzibar (~80km apart). In their
study based on the analysis of mitochondrial deoxyribose
nucleic acid (mtDNA), Sarnblad er al. (2011) have demon-
strated significant genetic differences between T. aduncus
from the North and South of Zanzibar, indicative of popula-
tion structuring. However, photo-identification data have
demonstrated a degree of individual movement between
these two areas (Gridley, 2011). (iv) We tested for bias asso-
ciated with training the classifier with a dataset from a differ-
ent geographical region to that where the test data were
collected by running the training and classification analysis
as in analysis II but only using one T. aduncus population
(i.e., data from either Plettenberg Bay or Zanzibar). The
classification outcomes under this scenario were then com-
pared to a classification test using the alternate population,
which had not been used in training. We hypothesized that
the correct classification scores for 7. aduncus would fall
under this scenario compared to if the classifier was trained
and tested with data collected from the same region. (v) We
investigated the potential for false detections of burst pulse
(BP) sounds to influence classification success.

Automated whistle detection and classification in
PAMGuard is described in detail in Gillespie et al. (2013)
and briefly outlined below. PAMGuard is designed for flexi-
bility with core functionalities and a range of additional plu-
gins that can be integrated within a single interface. In this
study, we used two plugins tailored to tonal sounds: the
WMD and the whistle classifier. The WMD automatically
detects and extracts whistle contours by searching for spec-
tral peaks within a user-specified frequency band. We ran
the WMD on click and noise free FFT data (summarized in
Table I), between 3 and 24 kHz with the amplitude threshold
set to 8 dB (spectrogram settings FFT length 512 samples,
FFT hop size 256 samples, Hanning window, time resolution
5.33, time step size 2.67 ms). The 3 kHz threshold was cho-
sen after trials of the WMD demonstrated a high false
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detection rate due to low frequency engine and water noise
in the recordings in the 0-3 kHz bandwidth.

When conducting this analysis there exists a trade-off in
the choice of fragment and section length. Short fragment
(e.g., <50ms) and section (e.g., 20 fragments) lengths can
lead to unstable measurement of parameters and suboptimal
classification success rate, whereas long section lengths requir-
ing many fragments may need more whistles before classifica-
tion can occur (Gillespie et al., 2013). Choice of fragment
length and section length was made by running a subset of
data through the classifier for varying fragment length (from 5
to 70 bins, i.e., 16.1-191.6 ms) and section length (from 10 to
70 fragments). After following the advice set out in Gillespie
et al. (2013), Caillat (2013), and a comprehensive testing
period, we selected the following settings to conduct the analy-
sis: the whistle classifier was run using a fragment length of 40
bins (equivalent to 110.6 ms) and section length of 60 frag-
ments, over 100 bootstraps for the different datasets. The boot-
strapping process allows the classification output to be
presented with a standard deviation (SD) for each classification
score. These parameters were similar to those used in Gillespie
et al. (2013) in terms of the number of bins generated from the
spectrogram with a FFT length of 512 (Gillespie et al., 2013,
used a fragment length of 30 bins and section length of 60
fragments). However, the time resolution of the spectrograms
used in the two studies differs due to the different sampling
rates: in this study a 96 kHz sampling rate was used resulting
in a time resolution of 5.33ms; in Gillespie et al. (2013) a
48 kHz sampling rate was used, resulting in a time resolution
of 10.67 ms. Classification in this study is therefore based on
shorter whistle fragments compared to Gillespie et al. (2013).

Files containing at least one whistle were considered suit-
able for analysis in PAMGuard. We sub-sampled the data
from some regions to minimize differences in sample sizes
and prevent over sampling of individuals or behavioral con-
texts. The small population of T. truncatus in Walvis Bay
(~100 individuals) was substantially recorded, therefore, we
sub-sampled this dataset to one recording per encounter.
Although the number of encounters were fewer in Plettenberg
Bay, the group sizes were large (mean 129 individuals;
Gridley, 2011) and whistle rates were very high compared to
the other populations. Several short recordings were usually
made per encounter. Therefore we sub-sampled these data so
that 60%—-80% of the recordings from each encounter were
analyzed. Except for analysis III, we included all recordings
with whistles of T. aduncus from Zanzibar, as recording effort
was distributed over many encounters and individuals. In
analysis III, only data from Zanzibar North and South were
included and we randomly sub-sampled the acoustic data
from Zanzibar North to run the analysis with similar sample
sizes between the two locations. We included all available
acoustic data from D. delphis, which was the smallest dataset
in terms of recording occasions. However, group sizes and
whistle rates were high.

In undertaking this analysis, we identified that the detec-
tion of BP sounds could possibly be a source of error affect-
ing classification accuracy. BP sounds are broadband click-
based sounds that appear as tonal sounds when displayed in
the frequency domain on a spectrogram (Watkins, 1968),
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and could be detected by the WMD as whistle-like frequency-
modulated contours with sidebands and overtones (Fig. 2). To
investigate the influence of false positive BP detection on the
whistle classification, we conducted an analysis regarding BP
sound detection by the WMD. For the Tursiops populations, a
30s sub-sample of acoustic recording was taken from each
file, representing a total of 15% of the duration of the combined
dataset. As fewer recordings were available for D. delphis, we
took additional 30's sub-samples from within the available files
(n=19 sections from 11 files). All sub-sampled file sections
were visually reviewed in Adobe Audition (FFT 512, 50%
overlap, Hanning window) to manually count BP events, and
files were run in the WMD. Detection output was manually
reviewed in the PAMGuard “Viewer” mode to identify the rate
of false detections attributed to BP sound detection.

lll. RESULTS

Acoustic recordings of three species of delphinid from
four populations were analyzed during this study. The num-
ber of encounters varied from 2 (D. delphis) to 46 (T. trunca-
tus) with the most comprehensive sampling conducted in
Walvis Bay, Namibia. However, due to variations in whis-
tling rate between these populations, differences in the over-
all number of segments included in the analysis were not
great. Between 14 777 (D. delphis) and 38 230 (T. truncatus)
segments were included from each population (Table I).

A. Descriptive statistics and pair-wise comparison of
whistle parameters

There were clear differences in the whistle characteris-
tics of the four dolphin populations (three species) when

12 April 2014 14:11:20 UTC

FIG. 2. (Color online) A spectrogram of 2 s of common dolphin recording
showing the detected whistles segments and two detected BP segments
using the PAMGuard WMD (FFT 512, 50% overlap, Hanning window).
(Spectrogram segment is from recordings of Delphinus delphis from
Plettenberg Bay on 12 April 2014.)
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analyzed individually with a non-parametric Kruskal-Wallis
one-way ANOVA. For every acoustic parameter tested, there
was at least one population significantly different from the
others (X% ranges from 124.45 to 1200.50, p <0.0001).
The frequency parameters (start, end, minimum, and maxi-
mum) of D. delphis were higher than both the Tursiops spe-
cies, ranging from mean minimum values of 8.81 kHz (£SD
2.00) to mean maximum values of 15.68 kHz (=SD 4.02).
Within Tursiops, the whistles of T. truncatus were consis-
tently higher than for T. aduncus for all frequency parameters
apart from end frequency. Tursiops truncatus had the longest
duration whistles of those measured (1.08 s = SD 0.65). The
relatively low frequency whistles of 7. aduncus ranged from
4.37kHz (= SD 1.35) to 11.44kHz (% SD 4.30) in Zanzibar
and from 3.92kHz (£ SD 1.64) to 9.62kHz (* SD 3.21) in
Plettenberg Bay. The whistles from these populations were
short in duration (0.37s*SD 0.22 and 0.44s+ SD 0.28,
respectively) and contained fewer inflection points (0.42
=+ SD 0.77 and 0.66 = SD 0.88, respectively) compared to 7.
truncatus or D. delphis. Overall, the Zanzibar population had
higher frequencies than the Plettenberg Bay population for
each of the four frequency parameters (minimum, maximum,
start, and end frequency; Table II).

Dunn’s multiple pair-wise comparison showed that the
whistles from each of the four populations were statistically
different (p < 0.0001) from the others for all apart from two
acoustic parameters measured—no significant difference
was identified between the end frequency of T. truncatus and
T. aduncus from Plettenberg Bay (p = 0.0510) or between T.
truncatus and T. aduncus from Zanzibar for frequency range
(p=0.0826; Table III). Although statistical differences in
the whistle parameters between 7. aduncus from North and
South Zanzibar were identified, these differences were slight
and reflected in four tested parameters: start frequency, end
frequency, maximum frequency, and frequency range
(Mann-Whitney U test, p < 0.05).

As this is the first description of whistles recorded
from D. delphis in southern Africa, we compared the fre-
quency parameters of whistle contours from this study with
those from other Delphinus populations (Table IV).
Comparisons demonstrate variability mainly in start and
end frequency parameters, whereas minimum and maxi-
mum frequency and the number of inflections points are
generally similar. The parameters of D. delphis from South
Africa (this study) most closely match those reported in D.
delphis from the Celtic Sea and English Channel (Ansmann
et al.,2007).

B. Analysis I: Automated classification to species

Species classification in PAMGuard using contours
detected with the integrated WMD was highly accurate with
an overall mean correct classification score of 87.3% for the
three species (Table V). Classification scores were signifi-
cantly different from that expected by chance (#-test p < 0.001
in all cases) and SDs around the classification scores were rela-
tively low (range of SD 0.7-7.7). The whistles of T. aduncus
were classified with the greatest success with 96.3% (* SD
2.6) correct classification. Misclassification between 7.
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TABLE II. Summary of key acoustic characteristics of whistles produced by 3 species of delphinid from populations in the southern African subregion, includ-
ing Mean, Standard Deviation (SD), and Coefficient of Variation (CV) values. Species names abbreviated to first letters of genus and species only: Dephinus
delphis (Dd), Tursiops truncatus (Tt), Tursiops aduncus (Ta). Populations abbreviated as follows: Plettenberg Bay, South Africa (PB, SA), Walvis Bay,
Namibia (WB, NAM) and Zanzibar, Tanzania (ZB, TZ). The values presented for Delphinus delphis and Tursiops truncatus are from this study, the values for

Tursiops aduncus are from Gridley et al. (2012) and this study.

Start End Min Max Frequency Inflection Duration
Species (Population) N Statistics frequency (kHz) frequency (kHz) frequency (kHz) frequency (kHz) range (kHz) points (n) (s)
Dd 409 Mean (£ SD) 12.6 (4.6) 12.5 (4.7) 8.8 (2.0) 15.7 (4.0) 6.9 (3.6) 1.2(1.3) 0.7(0.4)
(PB,SA) (&% 37 37 23 26 53 113 65
Tt 801 Mean (* SD) 8.7 (3.5) 7.4 (3.1) 5.8 (1.9) 13.2 (3.0) 743.4) 2002.2) 1.1(0.6)
(WB, NAM) (&% 40 42 33 23 46 109 60
Ta 1677 Mean (*+ SD) 5.8 (3.0) 10.1 (4.7) 4.2(1.5) 11.3(3.9) 7.1 (4.0) 0.5(0.8) 0.40(0.2)
(All) Ccv 52 47 34 34 56 165 61
Ta 1166 Mean (*+ SD) 59 @3.1) 11.4 4.3) 4.4(1.3) 12.1 (3.9) 7.7 (4.0) 0.4 (0.8) 0.4(0.2)
(ZB, TZ) (&% 52 38 31 35 52 183 59
Ta 511 Mean (* SD) 5.53(2.9) 6.98 (4.3) 3.92 (1.6) 9.62 (3.2) 5.70(3.4) 0.66(0.9) 0.44(0.3)
(PB,SA) (&)Y 52 61 42 33 60 134 62

aduncus and T. truncatus was rare (3.3%) and virtually absent
between T. aduncus and D. delphis (0.04%). Delphinus delphis
was correctly classified in 87.6% (= SD 7.7) of cases,
although whistles were occasionally misclassified as T. trunca-
tus (12.9%). While still well classified, the whistles of T. trun-
catus had the lowest correct classification score 79% (£ SD
6.7). Misclassification with D. delphis was relatively common
(19.4%), but the whistles of T. truncatus were rarely confused
with those of T. aduncus (1.6%). In summary, most error in
classification could be attributed to confusion between T. trun-
catus and D. delphis, whereas the whistles of T. aduncus were
unlikely to be confused with either of these two species.

C. Analysis IlI: Investigating the impact of macro-
geographical variation within species

We tested the PAMGuard whistle detection and species
classification as in analysis I but with data from the two T.
aduncus populations from Plettenberg Bay and Zanzibar
Island included separately. The overall correct classification
rate in this analysis was high (78.4%) and above that
expected by chance (¢-test p < 0.001, Table VI). Within this
analysis, correct classification to species remained almost
unchanged: 86.7% (= SD 7.6) for D. delphis and 79.3%
(=SD 5.9) for T. truncatus. High classification scores for
T. aduncus from Plettenberg Bay and Zanzibar populations
(70.7% = SD 8.6 and 77.1% = SD 10.2, respectively) showed
it was possible to discriminate between these two

geographically separate populations of the same species.
However, the correct classification rate fell by 25.6% and
19.2% for Plettenberg Bay and Zanzibar Island, respectively,
compared to the combined T. aduncus rate found in analysis I
and the level of uncertainty in this classification test increased
from a coefficient of variation [CV = (SD/mean) x 100] of
7% for the three-species classifier to 10.2% for the four-
population classifier. These results demonstrate that although
correct classification rates may fall, classification to popula-
tion is possible in PAMGuard and can take place without
affecting the classification scores of other species simulta-
neously tested.

D. Analysis llI: Investigating micro-geographic
differences

In analysis III, we tested the PAMGuard whistle detec-
tion and classifier on only T. aduncus whistles from North
and South Zanzibar (respectively, 4952 and 4743 segments
contours detected) to investigate whether PAMGuard could
discriminate between the whistles from these two areas.
Although some statistical differences did exist in the stan-
dard whistle parameters such as start frequency, end fre-
quency, maximum frequency, and frequency range,
demonstrating micro-geographic variation between these
areas, the PAMGuard classification results were poor. The
overall correct classification score for this analysis did not
differ from chance (mean correct classification of 52.7%

TABLE III. Results of multiple pair-wise comparisons using the Dunn test with Holm correction on acoustic characteristics between populations. Significant
differences are noted by “*.” Species names abbreviated to first letters of genus and species only: Dephinus delphis (Dd), Tursiops truncatus (Tt), Tursiops
aduncus (Ta). Populations abbreviated as follows: Plettenberg Bay (PB) and Zanzibar (ZB).

Pair-wise Start End Minimum Maximum Frequency Inflection

comparisons Statistics frequency frequency frequency frequency range points Duration

Dd Tt P (adjust) <0.0001%* <0.0001* <0.0001%* <0.0001%* 0.0024* <0.0001* <0.0001%*
Ta (ZB) P (adjust) <0.0001* 0.0105* <0.0001%* <0.0001* <0.0001* <0.0001* <0.0001%*
Ta (PB) P (adjust) <0.0001* <0.0001* <0.0001* <0.0001* <0.0001* <0.0001* <0.0001*

Tt Ta (ZB) P (adjust) <0.0001* <0.0001* <0.0001* <0.0001* 0.0826 <0.0001* <0.0001*
Ta (PB) P (adjust) <0.0001*